

RESPIRATION IN SPEECH: CONTROL, GLOBAL AND LOCAL EFFECTS

Didier Demolin¹, Sergio Hassid² and Shi Yu¹ Laboratoire de Phonétique et Phonologie, UMR-7018, CNRS, Sorbonne-Nouvelle¹ Hôpital Erasme, Université Libre de Bruxelles²

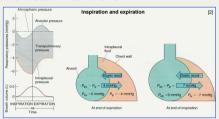
BACKGROUND

- Breathing is essential to man's ability to speak. The respiratory bellows provide the power to the vocal apparatus.
- Expiration in speech often continues until lung volume decreases below functional residual capacity.
- Speakers appear to achieve a compromise between ventilatory and speech demands on flow rates. How?

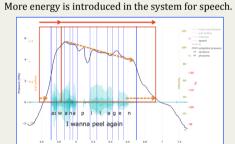
OBJECTIVES

- How is the relative constancy of P_s achieved despite the continual change of relaxation forces?
- How to account for the relation between P_s and fundamental frequency (F_θ) in intonation and stress patterns?

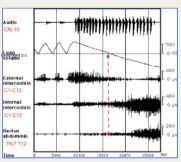
METHOD


- Simultaneous recording of intraoral (P_o) , subglottal pressures (P_s) and or<u>al airflow</u>.
- $-P_s$ by direct tracheal puncture under the cricoid cartilage.
- P_o with a tube inserted through the behind the velum.
- Oral airflow measured with a flexible rubber mouthpiece.
- All parameters, including the speech signal, synchronized with a *Physiologia* workstation [1]
- 2 subjects pronounced a set of English sentences with varying intonation and stress patterns.

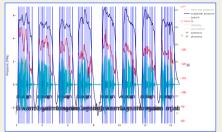
References


- [1] Teston, B. & Galindo, B. (1990). Physiologia: un logiciel d'analyse des paramètres physiologiques de la parole. Travaux Interdisciplinaires du Laboratoire Parole et Langage d'Aix-en-Provence (TIPA), 13:197–217. [2] Vander et al. (1998). Physiology The Mechanisms of Body Function. Mac Graw Hill.
- [3] Bouhuys, A. (1977). The physiology of breathing: a textbook for medical students. New-York. Grune & Stratton.
- [4] Demolin, D., Hassid, S., Ponchard, C., Yu, S. and Trouville, R. (2019). Speech aerodynamics database. Laboratoire de phonétique et de phonologie, CNRS-MR 7018, Sorbonne Nouvelle, Paris 3, ILPGA.

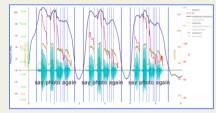
CONTROL


During speech an extra 6-10 hPa must be sustained above atmospheric pressure to provide the energy to speak. This is in addition to the ventilatory demands. Respiration functions as a dissipative system. How is it controlled in speech? By which neuromuscular mechanisms?

Inspiration & expiration in speech



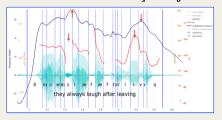
 P_s is sustained by the expiratory muscles after the recoil of the lungs tissues.



The external and internal intercostals muscles are the most important to regulate P_s . Not the diaphragm [3] What is role of the cervical and cranial nerves?

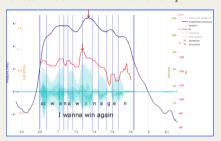
GLOBAL EFFECTS

 ΔP_s = loss due the system's compliance + effects of changes in R_g and R_σ ΔP_s = 2 hPa. Short inspiratory air takes between sentences, larger between groups of sentences.

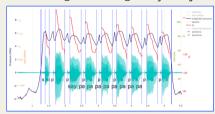


Effects of R_a on P_s

Uvular trills $P_s + 2 \text{ hPa}$


Effects of stress on P_c and F_a

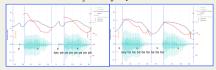
When a F_0 peak precedes the P_s peak in a stressed syllable, Rg triggers the rise of P_s


LOCAL EFFECTS

Effects of R_g on vowels and voiced consonants; R_o on voiceless consonants and trills and R_g + R_o on voiced fricatives. Lexical and emphatic stress have a 1 to 2 hPa elevation of P_σ



 R_g can quickly be adjusted and make F_0 rise before P_s . In this cas the thee P_s elevation is due to a higher R_s .


Effects of glottal settings on P_s and F_0

Gradual decrease of F_a peaks and not of P_a

 P_s and F_o in phase

CONCLUSION: Respiration in speech affects P_s and F_θ in complex ways. It is regulated by the cervical and cranial nerves.